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Thermal transpiration in a circular capillary with a 
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The results of an experimental investigation of the thermal transpiration effect (the 
thermomolecular pressure difference or t.p.d. effect) in a single glass capillary with a 
length-to-radius ratio of 250 are presented. The temperatures of the gas in the ‘cold’ 
and ‘hot’ chambers were 273.2 OK and 293 OK, respectively. A modified relative 
method has been used. To measure the t.p.d. effect, a capacitance differential digital 
micromanometer with sensitivity 4.5 x 10-5N/(m2Hz) was used. The gases in- 
vestigated were He, Ne, Ar, Xe, H2, D,, N,, CO,, CH, and SF,. It was discovered that 
in the intermediate flow regime the thermal-creep flow rate does not depend on the 
(non-isothermal) tangential momentum accommodation coefficient. From the experi- 
mental data on the viscous slip flow regime, the Eucken factors and the accom- 
modation coefficients are calculated. For inert gases the Eucken factor is found t o  be 
equal to 2-5 within the experimental error, while the accommodation coefficients 
differ significantly from unity. 

1. Introduction 
The pressure difference in a closed system filled with gas at a fixed temperature 

difference is called the thermomolecular pressure difference effect (the t.p.d. effect). 
From the practical point of view, the correct estimation of this effect is important 
when the gas pressure in the working chamber is measured with a device which is in 
different temperature conditions. The investigation of this effect is also of interest 
because it gives an important opportunity to study both qualitatively and quanti- 
tatively the interaction of gas molecules with solid surfaces. 

The t.p.d. effect, first discovered by Reynolds (1879) and studied by Maxwell (1953) 
and Knudsen (1910), continues to attract the attention of theorists and experi- 
mentalists. At present there exists a large amount of experimental material obtained 
by different methods for a wide range of Knudsen numbers at  various temperature 
differences (Itterbeek & Grande 1947; Bennet & Tompkins 1957; Podgurski & 
Davis 1961; Edmonds & Hobson 1965; Hobson 1969; McConville, Taylor & Watkins 
1970; Ganzi & Sandler 1971; Annis 1972; Borisov, Kulev, Porodnov & Suetin 1973; 
Borisov, Kulev, Porodnov, Suetin & Barashkin 1973). 

Despite the great number of experimental results there exists no correct theory 
for the t.p.d. effect at  arbitrary Knudsen numbers. Results have been obtained only 
for free-molecular flow (Knudsen 1910) and the continuum regime (Deryagin & 
Bakanov 1962; Suetin 1966). To describe experimental data over the whole range of 
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Knudsen numbers the semiempirical Liang (1955) formula as modified in Bennet & 
Tompkins (1957) has been widely used. 

In  recent years an attempt has been made to describe the t.p.d. effect by solving 
the Boltzmann equation or a model for both plane (Borisov et al. 1970; Gorelov & 
Cogan 1970; Loyalka 1971; Chernjak et al. 1975a, b; Loyalka & Cipolla 1971) and 
cylindrical geometries (Sone & Yamamoto 1968; Loyalka 1969; Chernjak, Porodnov 
& Suetin 1973, 1974). However, as a rule, completely diffuse scattering of the gas 
molecules by the surface was assumed in the theoretical considerations. The use of 
diffuse-specular boundary conditions makes it possible not only to describe quali- 
tatively the observed results (Chernjak et al. 1975a, b;  Loyalka & Cipolla 1971) but 
also to compare quantitatively theoretical and experimental results for cylindrical 
capillaries for an arbitrary flow regime (Chernjak et al. 1973). In  a recent paper 
(Loyalka 1975) an analogous problem has been solved by direct numerical solution 
of the integral transfer equations. 

It should be noted that, since the t.p.d. effect is small and the experimental tech- 
nique is not sufficiently efficient, the t.p.d. effect has so far been measured at tem- 
perature differences AT comparable to the mean gas temperature To, i.e. ATIT, - 1. 
This makes comparison of experimental data with theoretical predictions, which are 
obtained, as a rule, for the case of a small perturbation of the velocity distribution 
function (i.e. AT/To < i) ,  exceedingly difficult. 

In  the present paper some theoretical results and experimental data on the t.p.d. 
effect on inert and polyatomic gases in a single cylindrical capillary with a small 
temperature difference are given. From a comparison of the theoretical and experi- 
mental results, such characteristics as the flow rates, the thermal-creep constants, 
the Eucken factors and the accommodation coefficients are determined. 

2. Theory 
2.1. Basic formube for the t.p.d. eflect 

In  Chernjak et al. (1973, 1974, 1975a, b )  the formulation of the t.p.d. problem and 
the solution of the kinetic equation (BGK model) by an integral method with Max- 
wellian diffuse-specular boundary conditions are described in detail. Therefore, here 
we describe only those details which are necessary to confirm the correctness of the 
theoretical formula used to describe the experimental data and to determine the 
corresponding parameters. 

Let the temperature gradient be along the ( z )  axis of a capillary with radius R. 
This capillary connects two chambers. Owing to thermal creep flow, the gas pressure 
increases in the ‘hot’ chamber whereas it decreases in the ‘ cold’ chamber. As a result 
of the pressure gradient, a Poiseuille flow directed towards the ‘cold ’ chamber appears 
in the capillary. The thermal creep flow and the Poiseuille flow can be characterized 
by average (over the capillary cross-section) flow rates DT and Up which are related to 
the non-dimensional flow rates QT and Q p  through the cross-section at z by 
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where S is the cross-sectional area of the capillary and 7 and v are the logarithmic 
temperature and pressure gradients, respectively. 

It is evident that in the steady state the total average gas flow rate is zero, i.e. 
(uT) + (up)  = 0. In  this case, it is easy to obtain from (1) the differential formula 
for the t.p.d. effect: 

QT dP dT 
P = Y T ’  y = - -  QP 

In  the experiments the gas pressures Pl and P2 and temperatures Tl and T2 in the 
‘ cold ’ and ‘hot ’ chambers, respectively, were always measured. Therefore, for the 
t.p.d. effect the integrated formula is of practical interest. This formula can be obtained 
by integrating ( 2 )  along the capillary between the corresponding limits for the 
temperature and pressure in the form 

It should be noted that (3) is valid for the case AP/Po = 2(P2- P,)/(P2+ Pl) < 1 .  
Since the y, according to (Z), is determined by the ratio of the non-dimensional flow 
rates QT and Qp,  which depend on the temperature and pressure, in general y cannot 
be taken outside the integral sign in ( 3 ) .  Only when Tl z T2 does ( 3 )  give 

P2Pl = (T2ITl)Y. (4) 

This formula is the generalization to the arbitrary flow regime of the well-known 
Knudsen formula, which was obtained in the free-molecular flow regime with y = & 
(Knudsen 1 9 10). 

Thus the main difficulty in the description of this effect is the determination of 
QT and Q p  and the integration of ( 3 ) .  

2.2.  Integral tramport equations 
The QT and Q p  flows can be found from the solution of the basic kinetic equation for 
the perturbation function $ by the BGK model for the intermolecular collisions 
operator. The Poiseuille flow and the thermal-creep flow are investigated individually 
(as in Borisov et al. 1970; Chernjak et al. 1973, 1974, 1975~)  b;  Sone & Yamamoto 
1968; Loyalka 1971; Loyalka & Cipolla 1971) in the steady state for slow flows, when 
flows are proportional to the macroscopic value gradients. It is assumed that, since 
both flow rates are small, there will be negligible interaction between the solutions 
when they are combined to give zero net flow. Each flow can be described by means of 
corresponding kinetic equations such as 

C . a$,/ar + C, v = 6,E2C2 up( r )  - $p(r,  C,, C)l, 

C . a$,/ar + C,7(C2 + Cz -Q) = 6,[2C,u,(r) - $,(r, C,, C)], 

(5 4 
(5 b)  

’P,T = &d(R/AP,T)-  (5  4 
Here ( C ,  C,) = (m/SkT)4 (v, v,) are the non-dimensional molecular velocities, g5p and 
#T are the perturbation functions and 6, and 6, are the rarefaction parameters 
characterizing the Poiseuille and thermal-creep flows, respectively. 
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The mean free paths h , and h in (5 c )  are given by 

where 9 is the viscosity coefficient and K is the translational part of the heat con- 
ductivity coeficient. Such a choice for the rarefaction parameters is necessary to give 
the correct value of the Prandtl number, which for rarefied gases is Pr = 8 (Hirsch- 
felder, Curtiss & Bird 1961, p. 30; Cogan 1967, p. 131; Loyalka & Cipolla 1971). Note 
that use of a single parameter 6 to describe the t.p.d. effect by the BGK model leads 
to an incorrect value of the Prandtl number (namely Pr = 1 )  and to an incorrect 
coefficient in the formula for the thermal-creep flow rate in the viscous flow regime. 

From ( 5 c )  and (6) it is easy to obtain the relation between the parameters S, and 

(7) 
6,: 

= 8 f t r  
where ft, is the translational Eucken factor (Hirschfelder et al. 1961, p. 398; Loyalka 
& Cipolla 1971). 

Chernjak et aZ. (1973) hat-e solved the system (5) under the assumption of arbitrary 
tangential momentum accommodation of molecules incident on the wall. They 
obtained results for values of the parameter 6 ranging from 0 to 10 and values of the 
accommodation coefficient e ranging from 1 to 0.90. Note that Chernjak et al. (1973) 
used the single parameter S and the single accommodation coefficient E to describe 
both the Poiseuille flow and the thermal-creep flow. 

As mentioned above, here we use two rarefaction parameters 6, and 6, and two 
tangential momentum accommodation coefficients E and a for the Poiseuille flow and 
the thermal-creep flow, respectively. The two accommodation coefficients 8 and a 
have the same physical meaning. The difference between these coefficients lies in the 
fact that E describes the gas-surface interaction when the temperatures of the gas and 
the surface are the same (the Poiseuille flow), whereas a describes the gas-surface 
interaction when the temperatures of the gas and the surface are different (the 
thermal-creep flow). 

As in Suetin et al. (1973), one can use the definition of the macroscopic gas flow 
rates up and uT and introduce the new functions 

Then, from (5a, b ) ,  it is not difficult to obtain the following integral equations through 
integration along the direction of the characteristic velocity c and use of the Max- 
wellian boundary conditions as in Suetin et al. (1973): 
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1.668 
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TABLE 1.  The non-dimensional Poiseuille flow rate Q p  as the function of the 
rarefaction parameter Sp and the accommodation coefficient E .  
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2.187 
2.144 
2-085 
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1-992 
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1.888 
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Here So = r cosal + ( 1  - r2 sin2a,)a and 1 = 2( 1 - r2sin2a1)t (see figure 1 in ‘Suetin et 
al. 1973). 

The procedure for solving the integral equation (ga), which was described in detail 
in Suetin et al. (1973), was also used to solve (9b) .  All we need to add is that we used 
the Bubnov-Galerkin method in the second and the third approximations as well as 
basic functions of the form 

2.3. Numerical results 

As the expressions obtained are very cumbersome we omit all intermediate calcula- 
tions, including the coefficients in the second and third approximations, which are 
analogous to the coefficients ail in Suetin et al. (1973). 

All calculations were made on the computer with an accuracy of 0.1 yo. The results 
for Q p  and QT in the second approximation for different values of 6, and 6, and the 
accommodation coefficients 6 and a are given in tables 1 and 2. The values of Q p  and 
QT in the second and third approximations practically coincide in the free-molecular 
and nearly-free-molecular flow regimes (the difference lies within the limits of the 
accuracy of the calculations). The difference in the results for the thermal-creep flow 
is less than 1 % in the viscous flow regime. 

The calculations show that in the intermediate flow regime (6, = 2.51) the non- 
dimensional thermal-creep flow Q ,  is independent of the value of the accommodation 
coefficient a. 

It should be noted that the results obtained by Loyalka (1975) coincide with ours 
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1 0.96 0.92 0.88 0.84 0.80 0.76 0.72 0.68 0.64 0.60 
ST Y 
0.01 0.7178 0.7730 0.8325 0.8968 0.9779 1-048 1.138 1.245 1.348 1.464 1.597 
0.02 0.6939 0.7467 0.8013 0.8600 0.9278 0.9970 1.072 1.158 1.249 1.349 1.462 
0.04 0.6629 0.7075 0.7553 0-8064 0.8629 0-9226 0.9871 1.056 1-133 1.216 1.315 
0.06 0.6373 0.6774 0.7202 0,7659 0.8155 0.8687 0.9129 0.9851 1.052 1.126 1.200 
0.08 0.6159 0.6525 0.6914 0.7328 0.7773 0.8236 0.8678 0.9288 0.9879 1.050 1.122 
0.1 0.5975 0.6310 0-6665 0.7044 0.7428 0.7857 0.8319 0.8812 0.9350 0.9921 1.055 
0.2 0.5293 0.5532 0.5784 0.6048 0.6349 0.6621 0.5927 0.7481 0.7581 0.7547 0.8296 
0.4 0.4462 0.4607 0.4757 0-4913 0.5077 0.5248 0.5425 0.5613 0.5808 0.6018 0.6231 
0.6 0.3923 0.4018 0.4117 0.4219 0.4325 0.4431 0.4549 0.4665 0.4789 0.4914 0.5050 
0.8 0.3526 0.3592 0.3660 0.3729 0.3802 0.3876 0.3952 0.4030 0.4111 0.4194 0.4282 
1 0.3215 0.3461 0.3308 0.3356 0.3408 0.3459 0.3512 0.3566 0.3622 0.3679 0.3738 
2 0.2266 0.2273 0.2280 0.2288 0.2293 0.2300 0.2308 0-2315 0.2323 0.2330 0.2338 
3 0.1759 0.1765 0.1751 0.1748 0.1744 0.1740 0.1736 0.1732 0.1728 0.1724 0.1720 
4 0.1437 0.1430 0.1422 0.1415 0.1408 0.1401 0.1394 0.1386 0.1379 0.1372 0.1364 
5 0.1213 0.1205 0.1197 0.1188 0.1180 0.1172 0-1164 0.1166 0-1147 0.1139 0.1130 
6 0.1048 0.1040 0*1031 0.1023 0.1016 0.1007 0-0999 0.0991 0.0982 0.0974 0.0965 
7 0.0923 0.0915 0.0906 0.0898 0.0891 0.0883 0.0874 0.0866 0.0858 0.0850 0.0842 
8 0.0823 0.0816 0.0808 0.0800 0-0793 0.0785 0-0777 0.0770 0.0762 0.0754 0.0746 
9 0.0743 0.0736 0.0728 0.0721 0.0714 0.0707 0.0700 0.0692 0.0685 0.0677 0.0670 

10 0.0677 0.0670 0.0663 0.0655 0.0649 0.0643 0.0636 0.0629 0.0622 0.0615 0.0608 

TABLE 2. The non-dimensional thermal-creep flow rate QT as the function of the 
rarefaction parameter ST and the accommodation coefficient a. 

when a = € = 1 but differ significantly when a < 1 and 6 < 1.  This difference is due 
to an error made by Loyalka (1975): he wrote the second and third terms on the right 
sides of (9a, b) as a single term in which the integral over S had limits 0 and 1. This is 
not correct. 

We should like to note that equation (17) in Suetin et al. (1973) is given formally 
for simplicity. However, in all calculations Suetin et ul. (1973) solved the integral 
equation in the form (9a). 

In the viscous slip flow regime ( S p , T  % 1)  asymptotic analysis of the results of the 
Bubnov-Galerkin method for the second approximation gave the following formulae 
for the flow rates Q p  and Q T :  

) ( 16 +12--3n+-) n2 e3, 

128 3n 
n 8  

3n 
n 32 

nr'tD, = lOn-72+-++F(e)+ 
Here 

4 
+ ( z - S S +  15n-n2+- F ( B )  s2+ -7 
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where 

32 
d D T  = (T - 25 + 477 - +tF(a) + *G(a)) a 

+ 

+ ... 1-P I (1-P)’ 
33 

G(p)  = 1 + - 
23 

The first two terms of the asymptotic expansions of the solutions for Sp,T 9 1 are 

The higher-order terms in ( 1  1 a, b)  are difficult to obtain because of a considerable 
increase in the calculation required. Comparison of (10a, b )  and ( l l a ,  b )  shows 
that the convergence of the solution method used is better for the Poiseuille flow 
than for the thermal-creep flow. Comparison of the results calculated from the 
asymptotic formulae (10a, b )  with the numerical results (tables 1 and 2) shows that 
these results coincide within 1 yo when 8, 2 2 and 6 ,  2 4 and within 0.1 yo when 
8, 2 4 and S, 2 8. 

3. Experimental technique 
In the present study the t.p.d. effect was measured by a modified relative method 

with a differential capacitance digital micromanometer (Borisov, Kulev, Porodnov 
& Suetin 1973; Borisov, Kulev, Porodnov, Suetin & Barashkin 1973) of sensitivity 
- 4 x  10-5N/(m2Hz). 

The experimental set-up, shown in figure 1,  differs from that in Borisov, Kulev, 
Porodnov & Suetin (1973) only in its construction and in the position of the bypass 
stopcock. This arrangement allows a large ratio ( N 2000) of the conductances of the 
stopcock and the working capillary to be obtained. Such a ratio of the conductances 
enables us to neglect the possibility of a pressure difference under the working con- 
ditions when the bypass stopcock is open. A glass capillary with a length-to-radius 
ratio of -250 was used, the capillary radius being (6.46 2 0.01) x 10-2cm. The 
capillary was calibrated with mercury; the maximum divergence of the radius from 
its mean value was less than 0.3 yo. Note that the diameter of the compensating tube, 
which is a necessary element in the relative measurement method, is about 60mm. 
The gaa temperatures in the ‘hot’ and ‘cold’ chambers were 293 OK and 273.2 OK, 
respectively. 
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-1 
_ _ _ - - -  - _ - - - - - -  

FIGURE 1. Schematic diagram of the experimental set-up. 

The quantities measured were the temperature difference AT, the temperature Tl 
and absolute pressure Pl of the gas in the 'cold' chamber and the pressure difference 
AP = P, - PI in the steady-state gas flow in the capillary. The temperature difference 
was measured by a differential thermocouple with accuracy - 0.1 OK. The pressure 
Pl and the pressure difference AP were measured by two capacitance micromano- 
meters. The measurements of the t.p.d. effect AP were made for 2 < 6, < 200 for 
inert gases (He, Ne, Ar and Xe) and for polyatomic gases (H2, D,, N,, CH,, CO, and 
SF,). The purity of the gases was 99.7-99.9 yo. The measurement reproducibility was 
not less than 1 yo over the whole range of pressures studied. 

4. Measurements and discussion 
The measurements of the t.p.d. effect AP as a function of the rarefaction parameter 

6, are given in figure 2 for the inert gases and in figure 3 for the polyatomic gases. 
The parameter 6, was calculated from the average pressure Po and the mean tem- 
perature To according to ( 5 c )  and (6). As may be seen from figures 2 and 3, the t.p.d. 
effect attains a maximum in the range 2 < 8, < 4. The value attained depends upon 
the molecular weight of the gas. Note that AP decreases when the molecular weight 
increases. 
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SP 

FIGURE 3. Dependence of the t.p.d. effect on the rarefaction parameter 6 p  for polyatomio gases: 
0, H, (AT N 18.5 " C ) ;  0, H, ( A T  2: 20.0 "C); @, D,; a, N,; 0 ,  CH,; @, COB; 8 ,  SF,. 
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Y 

0.05 
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6 ,  
FIQURE 4. Dependence of the index y on the rarefaction parameter Sp in the intermediate flow 
regime. 0 , X e ;  (3 ,Ar;  @,Ne;  0 , H e ;  O , H , ;  @. C0,;-, a = e = 1 ; - - - , a  = e = 0.8; 
---, a = E = 0.8 (Loyalka 1976). 

The treatment of the experimental data consisted of the calculation of the index y 
of the t.p.d. effect as a function of the rarefaction parameter 8, from the known 
pressure difference AP, the pressure PI in the ‘cold’ chamber and the temperatures 
TI and T, with the help of (4). Note that the results for y calculated from (4) and (2) 
differ by less than 0.1 %. This fact justifies the assumptions made in the derivation 
of (3) and (4).  It should be mentioned that the results for y calculated from (2) and 
(4) at large temperature differences (77.2 OK and 293 OK; see Borisov et aZ. 1973a,b) 
differ significantly. The value of y in the first case is 13.5-14 yo larger than that in the 
second, this difference being constant over the whole range of pressures investigated. 
The experimental error in the value of y is less than 1-5 yo. 

The experimental values of y in the intermediate flow regime for some of the gases 
are shown in figure 4 as a function of the parameter 8,. The same figure shows the 
theoretical dependence y = y(8,) obtained from the solution of the integral equations 
(gal  b )  for the cases a = E = 1 and 0-88. Figure 4 also shows the result of Loyalka 
(1975) for a = E = 0.88. Note that for a = E = 1 our results coincide with those of 
Loyalka within 0-01-0.1 %, whereas for a = E = 0.88 they differ by N 10 %. In figure 
4 the experimental results systematically differ both from each other and from the 
theory for completely diffuse scattering of molecules at the wall. The reason for this 
difference is probably the difference in the accommodation coefficients for molecules 
on the wall. Another possible reason is the energy transfer from the translational to 
the rotational degrees of freedom resulting from intermolecular collisions, which is 
characterized by the Eucken factor (Hirschfelder et al. 1961, p. 396). However, 
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Yxe - 
Gas Y 
He 1.13 

Ne 1.17 

Ar 1.07 

Xe 1 

QP A B 
&p, 2 ~ ~ x 1 0 3  + A B X I O ~  

1.14 1.004 1.06 
+ 2  + 2  

1.17 0.988 1-00 
- + 1  - + 1  

1.08 1.030 1.16 
+ 3  +_3 

1 1.116 1.42 
+ 4  5 5  

- 0.988 1.07 
+ 2  + 2  

- 0.963 0-98 
+ 2  + 2  

- 0.923 0.92 
+ 2  + 2  

- 0.968 1.01 
+ 3  + 4  

- 0.889 0.84 
+-4 + 3  

- 0.919 0.76 
- + 3  - + 4  

TABLE 3. Parameter values. 

ftr U 

+- Aftr x 10* +- Au x 10' 

2.49 0-68 
+ 2  + 3  

2.48 0.65 
+ I  +_2 

2-61 0-74 
+ 3  - + 4  

2-67 0.79 
+ 5  + 5  

2.40 0.75 
+ 2  + 3  

2.38 0.69 
+ 2  + 3  

2.26 0.73 
k 3  + 3  

2.32 0.75 
5 4  + 6  

2-19 0.71 
+ 4  + 6  

2.41 0.55 
+ 4  + 5  

this cannot be of prime importance since for inert gases the Eucken factor is close 
to 2-5. 

The best coincidence (within 2 %) of the experimental and theoretical (a = F = 1) 
results is observed for Xe in the range 8, > 5. An analogous result was obtained in 
an experimental investigation of isothermal gas flow in glass capillaries (Porodnov 
et al. 1974). To make a quantitative estimate of the difference in the values of y for 
the various gases when 8, T 4, the ratios yxe /y  for all the gases were calculated and 
are given in table 3. The ratios Qp(e)/Qp,Xe of the non-dimensional flow rates of the 
gases and to that of Xe, taken from Porodnov et al. (1974), are also shown in table 3. 
This table shows that the equation yxe /y  = Q , ( F ) / Q ~ , ~ ~  is satisfied to within 1 %. 
This proves that the thermal-creep flow QT is independent [see (2)] of the non- 
isothermal tangential momentum accommodation coefficient a in the range 8, z 4 
and confirms the theoretical result obtained in this paper and by Chernjak et al. (1973) 
and Chernjak et al. (1975b). 

To describe and treat the experimental results in the viscous slip flow regime 
(8,  > 10) the formula 

y = Q T / Q p  = + B S F ~  + Cap3 + D8F4)/Qp(e) (12) 

was used. The Poiseuille flow rate Qp(c )  in (12) was calculated from the asymptotic 
formula (10 a) and the isothermal tangential momentum accommodation coefficient 8 
was taken from experiments on isothermal flow (Porodnov et al. 1974). Figure 5 shows 
the calculated values of the non-dimensional thermal-creep flow rate QT for some of 
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FIGURE 5. Dependence of the non-dimenaional thermal-creep flow on the rarefaction parameter 
Bp. 0, He; @, Ne; 8 ,  N,; 0,  CO,; -, a = 1 ;  ---, a = 0.8;  -.-, a = 0.8 (Loyalka 1975). 

the gases as a function of the parameter a,, as well as the theoretical values of QT 
for a = 1 and a = 0.8. 

The constants A and B in (12) were determined from the experimental data by the 
nonlinear least-squares method (on the computer). The constants C and D were 
calculated from ( 1 0 ~ )  with a = 1 in the first iteration. The calculated values of A 
and B are given in table 3. Note that the values of A coincide with the results of Annis 
(1972) within the limits of his experimental errors. 

According to (10 b) ,  the thermal-creep constants A and B are given by 

These equations were used to calculate the non-isothermal tangential momentum 
accommodation coefficient a and the Eucken factor ftr from the known values of the 
constants A and B. The experimental values of a and ft, are given in table 3. As may 
be seen, for all the inert gases investigated the Eucken factor is close to 2.5 and does 
not depend appreciably on the kind of gas. For the polyatomic gases the values of 
ft, are lower than 2.5 and the accommodation coefficients a are considerably lower 
than 1.  
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5. Conclusion 
The analysis of the results and their comparison with the experimental and theo- 

retical data show that in the intermediate flow regime (ap  N 4) the thermal-creep flow 
depends neither on the non-isothermal tangential momentum accommodation 
coefficient nor on the proportion of molecules diffusely scattered by the wall. In this 
flow regime the index y of the t.p.d. effect depends on the isothermal tangential 
momentum accommodation coefficient only through the dependence of the Poiseuille 
flow on this coefficient. 

In  the viscous slip flow regime (8, > 10) the experimental data coincide with the 
theoretical results for Xe for the case of the complete diffuse scattering of molecules 
by the wall. It was found, contrary to the results of Itterbeek & Grande (1947), 
Bennet & Tompkins (1957), McConville et al. (1970) and Ganzi & Sandler (1971) that 
for inert gases the Eucken factor is almost exactly 2.5 (within the limits of the experi- 
mental error), as may be expected from the kinetic theory for monoatomic gases, 
which have no internal degrees of freedom. For polyatomic gases the Eucken factor 
differs significantly from 2.5, decreasing as the number of internal degrees of freedom 
of the molecules increases. This result might have been expected from elementary 
consideration of the intermolecular collision processes. 

For all the gases investigated (but particularly the easily condensed gases such as 
Ar, Xe, CO, and SF,) the non-isothermal tangential momentum accommodation 
coefficient a essentially differs from unity. Its values differ greatly from those found 
when isothermal gas flow in capillaries was investigated and are close to the energy 
accommodation coefficients. This is probably due to the tangential heat transfer in a 
capillary with thermal creep, when the energy flow accommodation takes place on 
the wall. The difference between the temperatures of the reflected molecules and the 
wall can be regarded as a consequence of this. Unfortunately, a number of mathe- 
matical difficulties which we are unable to overcome as yet makes the consideration 
of the influence of this fact on the thermal-creep effect difficult. 

The authors are sincerely grateful to Mrs I. P. Fedotova for her help in preparing 
this manuscript for publication in English. 
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